Mark schemes

1. (a) friction
(b) (area of rectangle =) $108(\mathrm{~m})$

1
(area of triangle $=$) $54(\mathrm{~m})$
(total area / distance =) $162(\mathrm{~m})$
allow a correctly calculated total area / distance from an
incorrectly calculated area of rectangle and / or triangle
(c) (the force on the pedal) causes a moment about the pedal axle
which causes a force on the chain (which causes a moment about the rear axle) allow gear B for chain
(d) $2.4^{2}\left(-0^{2}\right)=2 \times a \times 18$

$$
a=\underline{2.4 \times 2.4}
$$

36
$a=0.16\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
alternative method
$\mathrm{t}=18 / 1.2$
$\mathrm{t}=15(\mathrm{~s})(1)$
$a=2.4 / 15(1)$
this mark may be awarded if the time is incorrectly calculated
$\mathrm{a}=0.16\left(\mathrm{~m} / \mathrm{s}^{2}\right)(1)$
allow a correctly calculated acceleration from an incorrectly calculated time 1
(e) horizontal (200N) and vertical (75N) forces drawn to the same scale
resultant force drawn in the correct direction
shown by an arrow head from bottom right to top left
resultant force with a value in the range 212 to 218 (N)
allow a calculated value of 213.6 or $214(N)$
1
direction in the range 20-22 (degrees from the horizontal)

allow 68-70 (degrees from the vertical)
allow a bearing in the range 290-292
to gain full marks a vector diagram must have been drawn
2. (a) (total) momentum before $=($ total $)$ momentum after allow (total) momentum stays the same
(b) momentum of player $\mathrm{A}=585(\mathrm{~kg} \mathrm{~m} / \mathrm{s})$
momentum of player $B=-500.5(\mathrm{~kg} \mathrm{~m} / \mathrm{s})$
$\frac{(-500.5+585)}{(78+91)}$
OR
$\frac{84.5}{169}$
allow $\frac{1085.5}{169}$
$=0.5(\mathrm{~m} / \mathrm{s})$
this answer only
(c) (protective pads) increase the time taken to stop (during the collision)
allow increases impact / contact / collision time do not allow slows down time
so the rate of change of momentum decreases allow reduces acceleration/deceleration allow increases the time to reduce the momentum to zero for $\mathbf{2}$ marks
reducing the force (on the ice hockey player)
allow impact for force
do not allow if linked to an incorrect explanation
3. (a) the tendency of an object to continue in its state of rest or motion allow how difficult it is to change the velocity of an object
(b) (soft foam) increases the time taken to stop allow increases impact/contact time
or
increases the time taken to decrease momentum
allow increases the time of the collision
do not accept slows down time
reducing the force (on the egg) allow impact for force
(c)
an answer $4.5(\mathrm{~m} / \mathrm{s})$ scores 4 marks
an answer 4500 scores 3 marks
$180 \mathrm{~ms}=0.18 \mathrm{~s}$
if incorrectly or not converted, subsequent marks may still be awarded for correct method and calculations

Alternative method
$180 \mathrm{~ms}=0.18 \mathrm{~s}$
$\Delta m v=144(\mathrm{kgm} / \mathrm{s})$
$\Delta v=144 \div 32$
$\mathrm{v}=4.5(\mathrm{~m} / \mathrm{s})$
Alternative method
$180 \mathrm{~ms}=0.18 \mathrm{~s}$
$\mathrm{a}=25\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
$25=\Delta v \div 0.18$
(1)
4. (a) longer arrow pointing vertically downwards one arrow only
labelled weight
allow (force of) gravity
(b) initially air resistance is less than weight / gravity so the skydiver accelerates
allow drag for air resistance
allow increased velocity / speed for accelerates
acceleration causes the air resistance to increase
acceleration or increased velocity / speed is not required here if given in the first mark point
resultant force decreases to zero
allow air resistance becomes equal to weight / gravity
so the skydiver falls at terminal velocity
allow constant velocity/speed for terminal velocity ignore any mention of subsequent motion and use of parachute
(c) an answer of $50(\mathrm{~m} / \mathrm{s})$ scores 3 marks
distance at $7 \mathrm{~s}=200(\mathrm{~m})$
distance at $12 \mathrm{~s}=450(\mathrm{~m})$
both distances required
speed $=\frac{450-200}{12-7}$ or $\frac{250}{5}$
allow correct use of their two distances divided by 5
$50(\mathrm{~m} / \mathrm{s})$
allow an answer consistent with their two distances
(d) The higher the altitude the less dense the air
so the air resistance on the skydiver (falling from 39000 m) was less (at the same speed)
so the skydiver was able to accelerate for longer before reaching (a higher) terminal velocity allow constant velocity/speed for terminal velocity

or

so the skydiver was able to accelerate for longer before air resistance = weight / gravity
5. (a) air molecules colliding with a surface create pressure
at increasing altitude distance between molecules increases
or
at increasing altitude fewer molecules (above a surface)
so number of collisions with a surface decreases
or
or so always less weight of air than below (the surface)
(b) atmospheric pressure $=20 \mathrm{kPa}$ from graph and conversion of $810 \mathrm{~cm}^{2}$ to $0.081 \mathrm{~m}^{2}$ allow ecf for an incorrect value clearly obtained from the graph
$5 \times 10^{4}=\underline{F}$
0.081
$F=5 \times 10^{4} \times 0.081$

4100 (N)
allow $4100(N)$ with no working shown for 5 marks allow 4050 with no working shown for 4 marks
(c) force from air pressure acting from inside to outside bigger than force acting inwards
so keeps the window in position
[10]
6. (a) the (perpendicular) distance from the pivot / hinge to (the line of action of) the force is
greater allow distance from the rope to the pivot / hinge is
greater (than distance between handle and pivot / allow distance from the rope to the pivot / hinge is
greater (than distance between handle and pivot / hinge)
so a smaller force is required this mark is dependent on scoring the 1st mark an answer a smaller force is required at the rope to produce the same moment scores 2 marks
(b)

$$
924=F \times 0.15
$$

$$
\mathrm{F}=6160(\mathrm{~N})
$$

$$
\text { allow use of } E=1 / 2 F \text { e instead of } k=F \div e \text { and }
$$

$$
E=1 / 2 \times k \times e^{2}
$$

$$
\begin{aligned}
& 6160=\mathrm{k} \times 0.25 \\
& \quad \text { allow their calculated } F=k \times 0.25
\end{aligned}
$$

$$
\mathrm{k}=\frac{6160}{0.25}
$$

or
$\mathrm{k}=24640(\mathrm{~N} / \mathrm{m})$
allow a value for k calculated using their calculated F
$E=\frac{1 / 2 \times 6160 \times 0.25 \times 0.25}{0.25}$
allow $E=1 / 2 \times$ their calc. $k \times 0.25^{2}$
$E=770(\mathrm{~J})$
allow an answer consistent with their calculated k
7. (a) all heights drawn the same as tube 1
judge by eye
(b) increasing depth increases the height / mass / volume (of the water column) above the swimmer
allow more water above (the swimmer)
more water is insufficient
increasing the weight / force (of water) acting on the swimmer
(c) increase in depth $=1.2$ (m)
$(\Delta) p=1.2 \times 1030 \times 9.8$
allow either 0.50 or 1.70 for 1.2
$(\Delta) p=12112.8$
allow a correctly rounded answer allow a correct calculation using either 0.50 or 1.70
pascals or Pa
do not accept pa
allow N / m^{2}
an answer of 12112.8 scores 3 marks
8. (a) arrow of equal size pointing vertically upwards judged by eye ignore horizontal arrows if equal and opposite horizontal arrows of unequal length negates this mark
labelled 'upthrust'
ignore buoyancy
ignore 25 kN
(b) weight $=25 \mathrm{kN}$
allow 24 to 25 kN inclusive
$25000=$ mass $\times 9.8$
or
$\mathrm{m}=\frac{25000}{9.8}$
allow their W correctly converted and substituted
$\mathrm{m}=2551 \mathrm{~kg}$
allow correctly calculated value using their converted W allow a value correctly calculated with W in $k N$
$\mathrm{m}=2600 \mathrm{~kg}$
allow a calculated answer correctly rounded to 2 significant figures
(c) Newton's 3rd law (of motion)
resultant tension force in the correct direction
shown by an arrowhead
value of the tension force in the range $156 \mathrm{~N}-160 \mathrm{~N}$
allow a calculated value of 158
value of direction in the range $18^{\circ}-20^{\circ}$ (from the horizontal)
allow 70° to 72° (from the vertical)
allow a bearing in the range 288 to 290
9. (a) accept any value between 12 (mm) and 13 (mm) inclusive
(b) to reduce the error in measuring the extension of the spring
accept length for extension throughout
1
as the ruler at an angle would make the measured extensions shorter
(c) $1(\mathrm{~N})$ to $6(\mathrm{~N})$
accept from $0(N)$ to $6(N)$
1
(d) gives a straight line through the origin
(e) any practical technique that would improve the accuracy of length measurement eg use a set square
to line up the bottom of the spring with the ruler scale
or
attach a horizontal pointer to the bottom of the spring (1)
so that the pointer goes across the ruler scale (1)
(f) the spring has been inelastically deformed
because it went past its limit of proportionality
accept elastic limit for limit of proportionality

1
accept it does not go back to its original length when the weights are removed
(b) 37.5 km
accept any value between 37.0 and 38.0 inclusive
062° or $\mathrm{N} 62^{\circ} \mathrm{E}$
accept 62° to the right of the vertical
accept an angle in the range $60^{\circ}-64^{\circ}$
accept the angle correctly measured and marked on the diagram
(c) train changes direction so velocity changes
acceleration is the rate of change of velocity
(d) number of squares below line $=17$
accept any number between 16 and 18 inclusive
each square represents 500 m
distance $=$ number of squares \times value of each square correctly calculated -8500 m
(a) the distance travelled under the braking force
(b) the reaction time will increase
increasing the thinking distance (and so increasing stopping distance)
(increases stopping distance is insufficient)
(c) No, because although when the speed increases the thinking distance increases by the same factor the braking distance does not.
eg
increasing from $10 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$ increases thinking distance from 6 m to 12 m but the braking distance increases from 6 m to 24 m
(d) If the sled accelerates the value for the constant of friction will be wrong.
(e) only a (the horizontal) component of the force would be pulling the sled forward
the vertical component of the force (effectively) lifts the sled reducing the force of the surface on the sled
(f) $-u^{2}=2 \times-7.2 \times 22$
award this mark even with 0^{2} and / or the negative sign missing
$u=17.7(99)$

18
allow 18 with no working shown for 3 marks allow 17.7(99) then incorrectly rounded to 17 for 2 marks

