Mark schemes

1.	(a)	friction	1		
	(b)	(area of rectangle =) 108 (m)			
		(area of triangle =) 54 (m)			
	(total area / distance =) 162 (m) allow a correctly calculated total area / distance from an incorrectly calculated area of rectangle and / or triangle				
	(c)	(the force on the pedal) causes a moment about the pedal axle	1		
	which causes a force on the chain (which causes a moment about the rear axle) allow gear B for chain		1		
	(d)	$2.4^2 (-0^2) = 2 \times a \times 18$	1		
		$a = \frac{2.4 \times 2.4}{36}$	1		
		a = 0.16 (m/s ²)	1		
		alternative method			
		t = 18 / 1.2 t = 15 (s) (1)			
		a = 2.4 / 15 (1) this mark may be awarded if the time is incorrectly calculated			
		a = 0.16 (m/s ²) (1) allow a correctly calculated acceleration from an incorrectly calculated time 1			

1

1

1

1

[13]

(e) horizontal (200N) **and** vertical (75N) forces drawn to the same scale

resultant force drawn in the correct direction shown by an arrow head from bottom right to top left

resultant force with a value in the range 212 to 218 (N) allow a calculated value of 213.6 **or** 214 (N)

direction in the range 20-22 (degrees from the horizontal)

allow 68–70 (degrees from the vertical) allow a bearing in the range 290–292 to gain full marks a vector diagram must have been drawn

(a) (total) momentum before = (total) momentum after allow (total) momentum stays the same
(b) momentum of player A = 585 (kg m/s)
momentum of player B = -500.5 (kg m/s)
(-500.5 + 585)

OR

84.5

allow <u>1085.5</u> 169

= 0.5 (m/s)

this answer only

1

1

Forces (H)			PhysicsAndMathsTutor.com
	(c)	(protective pads) increase the time taken to stop (during the collision) allow increases impact / contact / collision time do not allow slows down time	1
		so the rate of change of momentum decreases	
		allow reduces acceleration/deceleration	
		allow increases the time to reduce the momentum to zero for	r 2 marks
			1
		reducing the force (on the ice hockey player)	
		allow impact for force	
		do not allow if linked to an incorrect explanation	
			1 [8]
3.	(a)	the tendency of an object to continue in its state of rest or motion	
		allow how difficult it is to change the velocity of an object	
		Object	1
	(b)	(soft foam) increases the time taken to stop	
		allow increases impact/contact time	
		or	
		increases the time taken to decrease momentum	
		allow increases the time of the collision	
		do not accept slows down time	
			1
		decreases the rate of change in momentum	
		allow reduces acceleration/deceleration	
		reduces momentum is insufficient	
		allow increases the time to reduce the momentum to zero for 2 marks	
			1
		reducing the force (on the egg)	
		allow impact for force	

1

(c)

(a)

4.

an answer 4.5 (m/s) scores **4** marks an answer 4500 scores **3** marks

180 ms = 0.18 s	
if incorrectly or not converted, subsequent marks may still be awarded for correct method and calculations	1
$800 = \frac{32 \times v}{0.18}$	
$v = \frac{800 \times 0.18}{32}$	1
v = 4.5 (m/s)	1
Alternative method	1
180 ms = 0.18 s (1)	
$\Delta mv = 144 (kgm/s)$ (1)	
$\Delta v = 144 \div 32$ (1)	
v = 4.5 (m/s) (1)	
Alternative method	
180 ms = 0.18 s (1)	
$a = 25 (m/s^2)$ (1)	
$25 = \Delta v \div 0.18$ (1)	
v = 4.5 (m/s) (1)	
longer arrow pointing vertically downwards one arrow only	1
labelled weight allow (force of) gravity	-

1

[8]

Forces (H)

(b)	initially air resistance is less than weight / gravity so the skydiver accelerates	
	allow drag for air resistance	
	allow increased velocity / speed for accelerates	
		1
	acceleration causes the air resistance to increase	
	acceleration or increased velocity / speed is not	
	required here if given in the first mark point	
		1
	resultant force decreases to zero	
	allow air resistance becomes equal to weight / gravity	
		1
	so the skydiver falls at terminal velocity	
	allow constant velocity/speed for terminal velocity	
	ignore any mention of subsequent motion and use of	
	parachute	1
(-)		
(c)	an answer of 50 (m/s) assures 2 modes	
	an answer of 50 (m/s) scores 3 marks	
	distance at $7s = 200$ (m)	
	distance at $12s = 450$ (m)	
	both distances required	1
		1
	speed = $\frac{450 - 200}{12 - 7}$ or $\frac{250}{5}$	
	12-7 5	
	allow correct use of their two distances divided by 5	
		1
	50 (m/s)	
	allow an answer consistent with their two distances	
		1

Forces (H)
-----------	---

PhysicsAndMathsTutor.com

	(d)	The higher the altitude the less dense the air	1
		so the air resistance on the skydiver (falling from 39000 m) was less (at the same speed)	1
		so the skydiver was able to accelerate for longer before reaching (a higher) terminal velocity	
		allow constant velocity/speed for terminal velocity	1
		or	
		so the skydiver was able to accelerate for longer before air resistance = weight / gravity	[12]
5.	(a)	air molecules colliding with a surface create pressure	1
		at increasing altitude distance between molecules increases	
		or	
		at increasing altitude fewer molecules (above a surface)	1
		so number of collisions with a surface decreases	
		or	
		or so always less weight of air than below (the surface)	1
	(b)	atmospheric pressure = 20 kPa from graph and conversion of 810 cm ² to 0.081 m ² allow ecf for an incorrect value clearly obtained from the graph	1
		$5 \times 10^4 = F$	
		0.081	1
		$F = 5 \times 10^4 \times 0.081$	1
		4050	1
		4100 (N)	1
			-

6.

	allow 4100 (N) with no working shown for 5 marks		
	allow 4050 with no working shown for 4 marks		
(c)	force from air pressure acting from inside to outside bigger than force acting inwards	1	
	so keeps the window in position		
		1	[10]
(a)	the (perpendicular) distance from the pivot / hinge to (the line of action of) the force is greater		
	allow distance from the rope to the pivot / hinge is greater (than distance between handle and pivot / hinge)		
		1	
	so a smaller force is required		
	this mark is dependent on scoring the 1st mark		
	an answer a smaller force is required at the rope to produce the same moment scores 2 marks		
		1	

7.

[8]

(b)		
	an answer of 770 scores 6 marks	
	924 = F × 0.15	1
	F = 6160 (N)	
	allow use of $E = \frac{1}{2}F$ e instead of $k = F \div e$ and $E = \frac{1}{2} \times k \times e^2$	1
	$6160 = k \times 0.25$	
	allow their calculated $F = k \times 0.25$	1
	$k = \frac{6160}{0.25}$	
	k = 24640 (N/m)	
	allow a value for k calculated using their calculated F	1
	$E = \frac{\frac{1}{2} \times 6160 \times 0.25 \times 0.25}{0.25}$	
	allow $E = \frac{1}{2} \times \text{their calc. } k \times 0.25^2$	1
	E = 770 (J)	
	allow an answer consistent with their calculated k	1
(a)	all heights drawn the same as tube 1	
	judge by eye	1
(b)	increasing depth increases the height / mass / volume (of the water column) above the swimmer	
	allow more water above (the swimmer) more water is insufficient	
		1
	increasing the weight / force (of water) acting on the swimmer	1

Forces (H)

	(c)	increase in depth = 1.2 (m)	1	
		$(\Delta) p = 1.2 \times 1030 \times 9.8$		
		allow either 0.50 or 1.70 for 1.2	1	
		(Δ) p = 12112.8		
		allow a correctly rounded answer allow a correct calculation using either 0.50 or 1.70	1	
		pascals or Pa		
		do not accept pa allow N/m²		
		an answer of 12 112.8 scores 3 marks	1	71
			L	7]
8.	(a)	arrow of equal size pointing vertically upwards judged by eye		
		ignore horizontal arrows if equal and opposite horizontal arrows of unequal length negates this mark	1	
		labelled 'upthrust'		
		ignore buoyancy ignore 25 kN	1	
	(b)	weight = 25 kN	-	
	()	allow 24 to 25 kN inclusive	1	
		25 000 = mass × 9.8 or		
		$m = \frac{25000}{9.8}$		
		allow their W correctly converted and substituted	1	
		m = 2551 kg		
		allow correctly calculated value using their converted W allow a value correctly calculated with W in kN	1	
		m = 2600 kg		
		allow a calculated answer correctly rounded to 2 significant figures		
		an answer of 2600 scores 4 marks	1	

PhysicsAndMathsTutor.com

1

Forces (H)		
	(c)	Newton's 3rd law (of motion)
	(d)	vertical force (50 N) drawn and horizontal force (150 N) drawn to the same sca

9.

	and horizontal force (150 N) drawn to the same scale	1	
	resultant tension force in the correct direction shown by an arrowhead	1	
	value of the tension force in the range 156 N-160 N allow a calculated value of 158	1	
	value of direction in the range 18°–20° (from the horizontal) allow 70° to 72° (from the vertical) allow a bearing in the range 288 to 290	1	
(a)	accept any value between 12 (mm) and 13 (mm) inclusive	-	[11]
(4)		1	
(b)	to reduce the error in measuring the extension of the spring accept length for extension throughout	1	
	as the ruler at an angle would make the measured extensions shorter	1	
(c)	1 (N) to 6 (N) accept from 0 (N) to 6 (N)	1	
(d)	gives a straight line through the origin	1	
(e)	any practical technique that would improve the accuracy of length measurement eg use a set square	1	
	to line up the bottom of the spring with the ruler scale	1	
	or attach a horizontal pointer to the bottom of the spring (1)		
	so that the pointer goes across the ruler scale (1)	1	
(f)	the spring has been inelastically deformed		

the spring has been inelastically deformed (†)

1

		because it went past its limit of proportionality accept elastic limit for limit of proportionality		
		accept it does not go back to its original length when the weights are removed	1	[0]
10.	(a)	distance is a scalar and displacement is a vector		[9]
		or		
		distance has magnitude only, displacement has magnitude and direction	1	
	(b)	37.5 km accept any value between 37.0 and 38.0 inclusive	1	
		062° or N62°E		
		accept 62° to the right of the vertical	1	
		accept an angle in the range 60° – 64° accept the angle correctly measured and marked on the diagram		
	(c)	train changes direction so velocity changes	1	
		acceleration is the rate of change of velocity	1	
	(d)	number of squares below line = 17		
		accept any number between 16 and 18 inclusive	1	
		each square represents 500 m	1	
		distance = number of squares × value of each square correctly calculated – 8500 m	1	[8]
11.	(a)	the distance travelled under the braking force	1	
	(b)	the reaction time will increase	1	
		increasing the thinking distance (and so increasing stopping distance) <i>(increases stopping distance is insufficient)</i>	1	
	(c)	No, because although when the speed increases the thinking distance increases by the same factor the braking distance does not.		

	increasing from 10 m / s to 20 m / s increases thinking distance from 6 m to 12 m but the braking distance increases from 6 m to 24 m $$			
(d)	If the sled accelerates the value for the constant of friction will be wrong.	1		
		1		
(e)	only a (the horizontal) component of the force would be pulling the sled forward			
	the vertical component of the force (effectively) lifts the sled reducing the force of the surface on the sled			
(f)	$-u^2 = 2 \times -7.2 \times 22$	1		
(•)	award this mark even with 0^2 and / or the negative sign missing	1		
	u = 17.7(99)	-		
	18	1		
	allow 18 with no working shown for 3 marks	1		
	allow 17.7(99) then incorrectly rounded to 17 for 2 marks	[11]		